Wednesday, November 14, 2012

Karakterisitk Citra Ikonos Osa

      KETIKA perang Irak berlangsung, fasilitas Irak yang menjadi target militer Amerika Serikat sering muncul di media massa melalui rekaman satelit Ikonos. Ikonos memang punya resolusi spasial sangat tinggi, 1 meter untuk pankromatik dan 4 meter untuk multispektral, sehingga hasilnya amat jelas.Tahun 1992 Kongres AS meloloskan Undang-Undang PenginderaanJauh Daratan (US Land Remote Sensing Act). Undang-undang ini menyebutkanindustri inderaja satelit komersial sangat penting bagi kesejahteraan rakyat ASserta mengizinkan perusahaan-perusahaan swasta mengembangkan, memiliki,mengoperasikan serta menjual data yang dihasilkan.

      Dua tahun sesudahnya, lisensi diberikan pada Space  Imaging,  EarthWatch, dan OrbImage, yang kemudian merancang sistem dengan resolusi spasial 4 meter untuk moda multispektral dan 1 meter untuk moda pankromatik. Satu lisensi lagi diberikan pada West  Indian  Space-perusahaan patungan ASIsrael-  untuk merancang sistem pencitraan dengan resolusi sedikit lebih rendah, 1,8 meter.

     Dari keempat perusahaan, Space  Imaging yang paling cepat meluncurkan satelit Ikonos serta memasarkan datanya. Namun, Ikonos-1 gagal diluncurkan dan digantikan Ikonos-2, 1999.

     Kelahiran satelit inderaja resolusi tinggi (lebih halus dari 10 meter) untuk keperluan sipil sebenarnya dipicu oleh kebijakan pascaperang dingin, bukan teknologi. Bisa dikatakan teknologi militer awal tahun 1970-an sudah memungkinkan pencitraan dengan resolusi spasial kurang dari 10 meter. Kegagalan serupa dialami EarlyBird yang diluncurkan EarthWatch. Sedang OrbImage dan West Space Imaging masing-masing meluncurkan satelit Orbview dan EROS.

      Sejak diluncurkan pada September 1999, Citra Satelit Bumi Space Imagings IKONOS menyediakan data citra yang akurat, dimana menjadi standar untuk produk-produk data satelit komersoal yang beresolusi tinggi. IKONOS memproduksi citra 1-meter hitam dan putih (pankromatik) dan citra 4-meter multispektral (red, blue, green dan near-infrared) yang dapat dikombinasikan dengan berbagai cara untuk mengakomodasikan secara luas aplikasi citra beresolusi tinggi (Space Imaging, 2004)

       Diluncurkan pada September 1999, IKONOS dimiliki dan dioperasikan oleh Space Imaging. Disamping mempunyai kemampuan merekam citra multispetral pada resolusi 4 meter, IKONOS dapat juga merekam obyek-obyek sekecil satu meter pada hitam dan putih. Dengan kombinasi sifat-sifat multispektral pada citra 4-meter dengan detail-detail data pada 1-meter, Citra IKONOS diproses untuk menghasilkan 1-meter produk-produk berwarna IKONOS adalah satelit komersial beresolusi tinggi pertama yang ditempatkan di ruang angkasa. IKONOS dimiliki oleh Sapce Imaging, sebuah perusahaan Observasi Bumi  Amerika Serikat. Satelit komersial beresolusi tinggi lainnya yang diketahui: Orbview-3 (OrbImage),  Quickbird (EarthWatch) dan EROS-A1 (West Indian Space). IKONOS diluncurkan pada September 1999  dan pengumpulan data secara regular dilakukan sejak Maret 2000.


         Sensor OSA pada satelit didasarkan pada prinsip pushbroom dan dapat secara simultan mengambil  citra pankromatik dan multispektral. IKONOS mengrimkan resolusi sapatial tertinggi sejauh yang dicapai oleh sebuah satelit sipil. Bagian dari resolusi spasial yang tinggi juga mempunyai resolusi radiometrik tinggi  menggunakan 11-bit (Space Imaging, 2004)

         Banyak aplikasi untuk data IKONOS yang dapat diketahui. Pemilik berharap bahawa penggunaan lapanagn  dapat dibayar untuk harga data komersial. Diharapan bahwa, pada masa mendatang, 50% data foto udara  akan digantikan oleh citra beresolusi tinggi dari angkasa (camera pesawat digital akan banyak menggantikan  foto udara yang masih ada). Misi pertama IKONOS akan mendapatkan citra seluruh kota-kota uatama  Amerika Serikat. Sampai saat ini, pemetaan dan monitoring eral perkotaan dari angkasa (tidak hanya di Amerika) hanya mungkin pada skala terbatas.

       Data IKONOS dapat digunakan untuk pemetaan topografi dari skala kecil hingga menengah, tidak hanya menghasilkan peta baru, tetapi juga memperbaharui peta topografi yang sudah ada. Penggunaan potensial lain IKONOS adalah ‘precision agriculture’; hal ini digambarkan pada pengaturan band  multispektra, dimana mencakup band infra merah dekat (near-infrared). Pembaharuan dari situasi lapangan dapat membantu petani untuk mengoptimalkan penggunaan pupuk dan herbisida. Penggunaan pada poduk  ‘gambar’ dapat dilihat pada sektor bisnis, media dan pariwisata (Janssen dan Hurneeman, 2001)

Leia Mais…

Karakteristik Citra landsat ETM+

        Teknologi penginderaan jauh satelit dipelopori oleh NASA Amerika Serikat dengan diluncurkannya satelit sumberdaya alam yang pertama, yang disebut ERTS-1 (Earth Resources Technology Satellite) pada tanggal 23 Juli 1972, menyusul ERTS-2 pada tahun 1975, satelit ini membawa sensor RBV (Retore Beam Vidcin) dan MSS (Multi Spectral Scanner) yang mempunyai resolusi spasial 80 x 80 m. Satelit ERTS-1, ERTS-2 yang kemudian setelah diluncurkan berganti nama menjadi Landsat 1, Landsat 2, diteruskan dengan seri-seri berikutnya, yaitu Landsat 3, 4, 5, 6 dan terakhir adalah Landsat 7 yang diorbitkan bulan Maret 1998, merupakan bentuk baru dari Landsat 6 yang gagal mengorbit.

 
 Landsat 5, diluncurkan pada 1 Maret 1984, sekarang ini masih beroperasi pada orbit polar, membawa sensor TM (Thematic  Mapper), yang mempunyai resolusi spasial 30 x 30 m pada band 1, 2, 3, 4, 5 dan 7. Sensor Thematic Mapper mengamati obyek-obyek di permukaan bumi dalam 7 band spektral, yaitu band 1, 2 dan 3 adalah sinar tampak (visible), band 4, 5 dan 7 adalah infra merah dekat, infra merah menengah, dan band 6 adalah infra merah termal yang mempunyai resolusi spasial 120 x 120 m. Luas liputan satuan citra adalah 175 x 185 km pada permukaan bumi. Landsat 5 mempunyai kemampuan untuk meliput daerah yang sama pada permukaan bumi pada setiap 16 hari, pada ketinggian orbit 705 km (Sitanggang, 1999 dalam Ratnasari, 2000). Kemampuan spektral dari Landsat-TM, ditunjukkkan pada Tabel 2. Program Landsat merupakan tertua dalam program observasi bumi. Landsat dimulai tahun 1972 dengan satelit Landsat-1 yang membawa sensor MSS multispektral. Setelah tahun 1982, Thematic Mapper TM ditempatkan pada sensor MSS. MSS dan TM merupakan whiskbroom scanners. Pada April 1999 Landsat-7 diluncurkan dengan membawa ETM+scanner. Saat ini, hanya Landsat-5 dan 7 sedang beroperasi.

Sistem Landsat merupakan milik Amerika Serikat yang mempunyai tiga instrument pencitraan, yaitu RBV (Return Beam Vidicon), MSS (multispectral Scanner) dan TM (Thematic Mapper).
  • RBV
Merupakan instrumen semacam televisi yang mengambil citra snapshot dari permukaan bumi sepanjang track lapangan satelit pada setiap selangwaktu tertentu.
  • MSS
Merupakan suatu alat scanning mekanik yang merekam data dengan caramen-scanning permukaan bumi dalam jalur atau baris tertentu
  • TM
Juga merupakan alat scanning mekanis yang mempunyai resolusi spectral,spatial dan radiometric.
    Terdapat banyak aplikasi dari data Landsat TM: pemetaan penutupan lahan, pemetaan penggunaan lahan, pemetaan tanah, pemetaan geologi, pemetaan suhu permukaan laut dan lain-lain. Untuk pemetaan penutupan dan penggunaan lahan data Landsat TM lebih dipilih daripada data SPOT multispektral karena terdapat band infra merah menengah. Landsat TM adalah satu-satunya satelit non-meteorologi yang mempunyai band inframerah termal. Data termal diperlukan untuk studi proses-proses energi pada permukaan bumi seperti variabilitas suhu tanaman dalam areal yang diirigasi. 

Leia Mais…

Friday, November 9, 2012

Sampel dan Populasi


Sampel dapat didefinisikan sebagai sebagian anngota dari populasi yang dipilih menggunakan rosedur tertentu yang diharapkan dapat mewakili populasinya. Adapun jumlah atau banyaknua anggota sampel disebut ukuran sampel .Secara sederhana populasi dapat didefinisikan sebagai keseluruhan unit atau individe dalam ruang lingkp yang akan diteliti. Ada 2 macam populasi, polulasi sasaaran(target population) dan sampel (sampling population).

Leia Mais…

Thursday, October 25, 2012

Menghitung Waktu Shalat + software

Untuk menentukan waktu lima shalat wajib untuk suatu tempat dan tanggal tertentu, ada beberapa parameter yang mesti diketahui :

1. Koordinat lintang tempat tersebut (L). Daerah yang terletak di sebelah utara garis khatulistiwa (ekuator) memiliki lintang positif. Yang disebelah selatan, lintangnya negatif. Misalnya Fukuoka (Japan) memiliki lintang 33:35 derajat lintang utara (LU). Maka L = 33 + 35/60 = 33,5833 derajat. Jakarta memiliki koordinat lintang 6:10:0 derajat LS (6 derajat 10 menit busur lintang selatan). Maka L = minus (6 + 10/60) = -6,1667 derajat.

2. Koordinat bujur tempat tersebut (B) .Daerah yang terletak di sebelah timur Greenwich memiliki bujur positif. Misalnya Jakarta memiliki koordinat bujur 106:51:0 derajat Bujur Timur. Maka B = 106 + 51/60 = 106,85 derajat. Sedangkan disebelah barat Greenwich memiliki bujur negatif. Misalnya Los Angeles memiliki koordinat bujur 118:28 derajat Bujur Barat. Maka B = minus (118 + 28/60) = -118,4667 derajat.

3. Zona waktu tempat tersebut (Z). Daerah yang terletak di sebelah timur Greenwich memiliki Z positif. Misalnya zona waktu Jakarta adalah UT +7 (seringkali disebut GMT +7), maka Z = 7. Sedangkan di sebelah barat Greenwich memiliki Z negatif. Misalnya, Los Angeles memiliki Z = -8.

4. Ketinggian lokasi dari permukaan laut (H). Ketinggian lokasi dari permukaan laut (H) menentukan waktu kapan terbit dan terbenamnya matahari. Tempat yang berada tinggi di atas permukaan laut akan lebih awal menyaksikan matahari terbit serta lebih akhir melihat matahari terbenam, dibandingkan dengan tempat yang lebih rendah. Satuan H adalah meter.

5. Tanggal (D), Bulan (M) dan Tahun (Y) kalender Gregorian. Tanggal (D), bulan (M) dan tahun (Y) tentu saja menjadi parameter, karena kita ingin menentukan waktu shalat pada tanggal tersebut. Dari tanggal, bulan dan tahun tersebut selanjutnya dihitung nilai Julian Day (JD). Silakan lihat penjelasan detil tentang Julian Day pada tulisan sebelumnya tentang KALENDER JULIAN, KALENDER GREGORIAN dan JULIAN DAY. Namun ada baiknya untuk dituliskan kembali tentang rumus menghitung Julian Day. Saat ini karena Kalender Masehi yang digunakan adalah kalender Gregorian, maka rumus Julian Day adalah

JD = 1720994,5 + INT(365,25*Y) + INT(30,6001(M + 1)) + B + D.

Disini INT = lambang untuk nilai integer. Jika M > 2, maka M dan Y tidak berubah. Jika M = 1 atau 2, maka M ditambah 12 sedangkan Y dikurangi 1. Nilai B = 2 + INT(A/4) – A dimana A = INT(Y/100). Nilai JD di atas berlaku untuk pukul 12.00 UT atau saat tengah hari di Greenwich. Adapun JD untuk pukul 12.00 waktu lokal, maka JD pukul 12.00 UT waktu Greenwich tersebut harus dikurangi dengan Z/24 dimana Z adalah zona waktu lokal tersebut.

Dari nilai JD tersebut, dihitung sudut tanggal T dengan rumus

T = 2*PI*(JD – 2451545)/365,25.

Disini PI adalah konstanta yang bernilai 3,14159265359. Sementara itu 2451545 adalah Julian Day untuk tanggal 1 Januari 2000 pukul 12.00 UT. Angka 365,25 adalah banyaknya hari rata-rata dalam setahun. Jadi T menunjukkan sudut tanggal dalam setahun terhitung sejak tanggal 1 Januari 2000 pukul 12.00 UT.

6. Sudut Deklinasi matahari (Delta). Dari sudut tanggal T di atas, deklinasi matahari (Delta) untuk satu tanggal tertentu dapat dihitung dengan menggunakan rumus berikut

Delta = 0,37877 + 23,264*SIN(57,297*T – 79,547) + 0,3812*SIN(2*57,297*T – 82,682) + 0,17132*SIN(3*57,297*T – 59,722)

Angka yang terletak di dalam kurung bersatuan derajat. Deklinasi juga bersatuan derajat.

7. Equation of Time (ET). Equation of Time untuk satu tanggal tertentu dapat dihitung sebagai berikut. Pertama kali perlu dihitung dahulu Bujur rata-rata matahari L0 yang dirumuskan

L0 = 280,46607 + 36000,7698*U

dimana U = (JD – 2451545)/36525. L0 bersatuan derajat. Selanjutnya Equation of Time dapat dirumuskan sebagai

1000*ET = -(1789 + 237*U)*SIN(L0) – (7146 – 62*U)*COS(L0) + (9934 – 14*U)*SIN(2*L0) – (29 + 5*U)*COS(2*L0) + (74 + 10*U)*SIN(3*L0) + (320 – 4*U)*COS(3*L0) – 212*SIN(4*L0)

Ruas kiri persamaan di atas masih bernilai 1000 kali ET. Dengan demikian hasilnya harus dibagi 1000 untuk mendapatkan ET. Satuan ET adalah menit.

8. Altitude matahari waktu Shubuh dan Isya. Shubuh saat fajar menyingsing pagi disebut dawn astronomical twilight yaitu ketika langit tidak lagi gelap dimana atmosfer bumi mampu membiaskan cahaya matahari dari bawah ufuk. Sementara Isya’ disebut dusk astronomical twilight ketika langit tampak gelap karena cahaya matahari di bawah ufuk tidak dapat lagi dibiaskan oleh atmosfer. Dalam referensi standar astronomi, sudut altitude untuk astronomical twilight adalah 18 derajat di bawah ufuk, atau sama dengan minus 18 derajat. Ada dua jenis twilight yang lain, yaitu civil twilight dan nautical twilight masing-masing sebesar 6 dan 12 derajat di bawah ufuk.

Namun demikian ada beberapa pendapat mengenai sudut altitude matahari di bawah ufuk saat Shubuh dan Isya’. Diantaranya berkisar antara 15 hingga 20 derajat. Dengan demikian, perbedaan sudut yang digunakan akan menyebabkan perbedaan kapan datangnya waktu Shubuh dan Isya’.

9. Tetapan panjang bayangan Ashar Disini ada dua pendapat. Pendapat madzhab Syafi’i menyatakan panjang bayangan benda saat Ashar = tinggi benda + panjang bayangan saat Zhuhur. Sementara pendapat madzhab Hanafi menyatakan panjang bayangan benda saat Ashar = dua kali tinggi benda + panjang bayangan saat Zhuhur.

RUMUS WAKTU SHALAT

Rumus untuk menentukan waktu shalat dan terbit matahari adalah sebagai berikut.

* Zhuhur = 12 + Z – B/15 – ET/60
* Ashar = Zhuhur + (Hour Angle Ashar)/15
* Maghrib = Zhuhur + (Hour Angle Maghrib)/15
* Isya’ = Zhuhur + (Hour Angle Isya’)/15
* Shubuh = Zhuhur – (Hour Angle Shubuh)/15
* Terbit Matahari = Zhuhur – (Hour Angle Terbit Matahari)/15

Dari rumus di atas, nampak bahwa waktu shalat bergantung pada Hour Angle. Rumus Hour Angle (HA) adalah

COS(HA) = [SIN(Altitude) - SIN(Lintang)*SIN(Delta)]/[COS(Lintang)*COS(Delta)]

sehingga

Hour Angle = ACOS(COS(HA)).

Rumus Hour Angle dii atas bergantung pada Altitude. Altitude matahari atau sudut ketinggian matahari dari ufuk inilah yang berbeda nilainya untuk setiap waktu shalat.

* Untuk Ashar, Altitudenya = ARCCOT(KA + TAN(ABS(Delta – Lintang))), dimana KA = 1 untuk Syafi’i dan 2 untuk Hanafi. Lambang ABS menunjukkan nilai absolut atau nilai mutlak. Misalnya, ABS(-2) = ABS(2) = 2.
* Untuk Maghrib, Altitude = 0,8333 – 0,0347*SQRT(H) dimana SQRT menunjukkan lambang akar pangkat dua, dan H = ketinggian di atas permukaan laut.
* Untuk Isya’, Altitude = minus(Sudut Isya’). Jika sudut Isya’ diambil 18 derajat, maka Altitude Isya’ = -18 derajat.
* Untuk Shubuh, Altitude = minus(Sudut Shubuh).
* Untuk Terbit Matahari, Altitudenya sama dengan Altitude untuk Maghrib.

CONTOH: Tentukan waktu-waktu shalat pada tanggal 12 Juni 2009 di Jakarta (L = -6,166667 derajat, B = 106,85 derajat, Z = 7, H = 50 meter). Sudut Subuh = 20 derajat. Sudut Isya’ = 18 derajat. Ashar menggunakan madzhab Syafi’i (KA = 1).

Jawab:

* Pertama kali, tentukan dahulu Julian Day untuk 12 Juni 2009 pukul 12 UT. Dari tanggal tersebut diperoleh nilai D = 12, M = 6, Y = 2009, A = 20 dan B = -13. Dapat dihitung nilai JD = 2454995,0.
* Selanjutnya untuk tanggal 12 Juni 2009 pukul 12 WIB (waktu lokal di Jakarta), JD = 2454995,0 EZ/24 = 2454995,0 E7/24 = 2454994,708.
* Sudut Tanggal T = 2*PI*(2454994,708 – 2451545)/365,25 = 59,34334487 radian.
* Deklinasi Matahari atau Delta = 23,16099835 derajat
* Sementara itu U = (2454994,708 – 2451545)/36525 = 0,094447867.
* Bujur rata-rata matahari L0 = 3680.66198 derajat = 80,66198 derajat.
* Untuk Equation of Time, akhirnya dapat dihitung 1000*ET = 175 menit sehingga ET = 0,175 menit.

Dari data-data perhitungan di atas, kini waktu shalat dapat dihitung.

Waktu Zhuhur adalah 12 + Z – B/15 – ET/60 = 12 + 7 – 106,85/15 – 0,175/60 = pukul 11,87375 WIB. Jika nilai ini dikonversi ke jam-menit-detik, diperoleh pukul 11:52:26 WIB.

Waktu Ashar (madzhab Syafii).

* Altitude Ashar adalah ARCCOT(1 + TAN(ABS(23,16099835 – (-6,166667)))) = 32,63075274 derajat.
* COS(Hour Angle Ashar) = [SIN(32,63075274) - SIN(-6,166667)*SIN(23,16099835)] / [COS(-6,166667)*COS(23,16099835)] = 0,636127253.
* Hour Angle Ashar = ACOS(0,636127253) = 50,496359 derajat.
* Jadi Waktu Ashar = Zhuhur + (Hour Angle Ashar)/15 = 11,87375 + 50,496359/15 = pukul 15,24017 sama dengan pukul 15:14:25 WIB.

Waktu Maghrib.

* COS(Hour Angle Maghrib) = [SIN(-0,833 - 0,0347*SQRT(50)) - SIN(-6,166667)*SIN(23,16099835)] / [COS(-6,166667)*COS(23,16099835)] = 0,025627029.
* Hour Angle Maghrib = ACOS(0,025627029) = 88,53151863 derajat.
* Waktu Maghrib = Zhuhur + (Hour Angle Maghrib)/15 = 11,87375 + 88,53151863/15 = pukul 17,77585 sama dengan pukul 17:46:33 WIB.

Waktu Isya’.

* COS(Hour Angle Isya’) = [SIN(-18) - SIN(-6,166667)*SIN(23,16099835)] / [COS(-6,166667)*COS(23,16099835)] = -0,291840581.
* Hour Angle Isya’ = ACOS(-0,291840581) = 106,9681811 derajat.
* Waktu Isya’ = Zhuhur + (Hour Angle Isya’)/15 = 11,87375 + 106,9681811/15 = pukul 19,00496 sama dengan pukul 19:00:18 WIB.

Waktu Shubuh.

* COS(Hour Angle Shubuh) = [SIN(-20) - SIN(-6,166667)*SIN(23,16099835)] / [COS(-6,166667)*COS(23,16099835)] = -0,327945769.
* Hour Angle Shubuh = ACOS(-0,327945769) = 109,441394 derajat.
* Waktu Shubuh = Zhuhur – (Hour Angle Shubuh)/15 = 11,87375 – 109,1441394/15 = pukul 4,59748 sama dengan pukul 4:35:51 WIB.

Waktu Terbit Matahari.

* COS(Hour Angle Terbit Matahari) = [SIN(-0,833 - 0,0347*SQRT(50)) - SIN(-6,166667)*SIN(23,16099835)] / [COS(-6,166667)*COS(23,16099835)] = 0,025627029.
* Hour Angle Terbit Matahari = ACOS(0,025627029) = 88,53151863 derajat.
* Waktu Terbit Matahari = Zhuhur – (Hour Angle Terbit Matahari)/15 = 11,87375 – 88,53151863/15 = pukul 5,97165 sama dengan pukul 5:58:18 WIB.

download software : Here

Leia Mais…

Thursday, October 18, 2012

Proyeksi Peta


   Proyeksi Peta adalah proses transformasi posisi titik obyek di permukaan bumi ke bidang peta. Sebelum proses transformasi tersebut, titik-titik obyek di permukaan bui (topografik) harus direduksi ke bidang ellipsoid atau bola acuan. Koordinat titik obyek (ϕ,λ) pada bidang acuan inilah yang ditransformasikan ke koordinat 2 dimensi (X,Y) atau (E,N) pada bidang Peta



     Kondisi yang harus dipenuhi dalam proyekasi peta ialah bidang proyeksi peta harus merupakan bangun geometric yang didatarkan (developable surface) seperti silinder, kerucut atau bidang datar sendiri. Proyeksi peta ini diperlukan justru karena permukaan bumi acuan yaitu bila dan ellipsoid,, bukan bidang yang dapat didatarkan (undevelopable surface). Karena bangun yang tidak didatarkan tersebut ditransformasikan (secara geometric atau matematik) ke bangun yang dapat didatarkan, maka proses proyeksi peta tidak akan bebas distorsi. Yang dimaksud distorsi disini ialah penyimpanga besaran/nilai hasil proyeksi terhadap besaran/nilai asalnya pada bidang yang diproyeksikan. Distorsi dapat terjadi pada besaran-besaran jarak,sudut dan luas dan bervariasi dari satu titik ke titik lain. Faktor-faktor yang menentukan distorsi peta ialah
(a).  Bentuk Geometri bidang Proyeksi
(b).  Persinggungan bidang acuan dengan bidang proyeksi
(c).  orientasi sumbu proyeksi
(d).  sifat-sifat proyeksi

Leia Mais…

Wednesday, October 3, 2012

Gelombang Pasut


Pasut merupakan salah satu fenomena alam yang pasti terjadi. dalam pembentukan gelombang pasut sangat di pengaruhi oleh gaya gravitasi bulan dan matahari. sebelum membahas apa itu pengertian pasut, mari terlebih dahulu mengetahui definisi dari gelombang. Gelombang merupakan pergerakan naik dan turunnya (vertikal) air dengan arah tegak lurus permukaan air laut yang membentuk kurva/grafik sinusoidal.sedang Menurut Newton tentang Pasut “Bahwa matahari dan Bulan membangkitkan medan gaya di sekeliling bumi, dimana arah dan besarnya gaya berubah-ubah secara periodic sesuai dengan posisi kedudukan benda langit terhadap bumi. Gaya inilah yang membangkitkan pasut laut dan disebut Gaya Pembangkit Pasut.”

Jadi Gelombang Pasut adalah Pergerakan Air laut secara Vertikal( naik turun ) secara periodic yang  secara utama dipengaruhi  oleh gaya gravitasi bulan dan matahari serta pergerakan rotasi bumi.

Ada beberapa gaya pembangkit pasut ialah:
·         Gaya Pembangkit Utama: gaya tarik Bulan
·         Gaya pembangkit kedua : Gaya tarik matahari
·         Gaya pembangkit ketiga : Pergerakan rotasi bumi ( gaya centrifugal bumi)


Seperti yang terlihat pada gambar, Gaya gravitasi digambarkan dengan panah berwarna hitam yang menuju kea rah bulan dan pada panah  yang berwarna merah menggambarkan arah resultan gaya centrifugal dan gaya penyeimbangnya digambarkan dengan panah berwarna biru.

Tipe-tipe pasut
Tipe pasut dipengaruhi oleh:
·         pengaruh kedudukan matahari dan bulan terhadap lokasi laut di bumi dan
·         Bentuk permukaan dasar laut lokasi tertentu
Adapun tipenya ada 3 yaitu
  1. ·         Diurnal 
  2. ·         Semi diurnal 
  3. ·         Mixed
Variasi pasut:
Variasi pasut dipengaruhi oleh kedudukan konstelasi benda langit ( Terutama bulan dan matahari) terhadap bumi.
Adapun variasinya adalah:
  1. ·         Spring Tides 
  2. ·         Pasang Perbani 
  3. ·         Proxigean tides
Tujuan adanya pengukuran Pasut:
  • ·         Mengkoreksi banyak pengukuran geodetic  
  • ·         Mengkalibrasi data satelit altimetry 
  • ·         Mendeteksi kenaikan mukaa air laut dan perubaha iklim global 
  • ·         Untuk proyek dinamika atmosfer( El nino, la nina) 
  • ·         Delimitasi area kelautan


Leia Mais…